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A model for the low-Reynolds-number flow of a capsule through a constriction is
developed for either constant-flow-rate or constant-pressure-drop conditions. Such a
model is necessary to infer quantitative information on the intrinsic properties of
capsules from filtration experiments conducted on a dilute suspension of such particles.
A spherical capsule, surrounded by an infinitely thin Mooney—Rivlin membrane, is
suspended on the axis of a hyperbolic constriction. This configuration is fully
axisymmetric and allows the entry and exit phenomena through the pore to be
modelled. An integral formulation of the Stokes equations describing the flow in the
internal and external domains is developed. It provides a representation of the velocity
at any location in the flow as a function of the unknown forces exerted by the
boundaries on the fluids. The problem is solved by a collocation technique in the case
where the internal and external viscosities are equal. Microscopic quantities
(instantaneous geometry, centre of mass velocity, elastic tensions in the membrane) as
well as macroscopic quantities (entry time, additional pressure drop or flow rate
reduction) are predicted as a function of the capsule intrinsic properties and flow
characteristics. The results obtained for a capsule whose initial diameter is larger than
that of the constriction throat show that the maximum energy expenditure occurs when
the particle centre of mass is still upstream of the throat (typically 1 diameter away),
and is thus due to the entry process. For large enough or rigid enough capsules, the
model predicts entrance or exit plugging, in agreement with experimental observations.
It is then possible to correlate the variation of the pore hydraulic resistance to the flow
capillary number (ratio of viscous to elastic forces) and to the size ratio between the
pore and the capsule.

1. Introduction

Encapsulation is an active field of research with applications in medicine,
pharmaceutics and industry. The development of relevant techniques to assess the
mechanical properties of encapsulated drops originates with the study of blood cells.
A number of experimental techniques such as viscometry and filtration have been
designed, spurring the development of mechanical and rheological models for the
quantitative interpretation of the results. The behaviour of a capsule in flow is difficult
to study because of the strongly coupled nature of the fluid/structure interactions that
govern its motion and deformation. A further complication is due to the large number
of parameters involved, such as the initial geometry of the particle or the internal liquid
and membrane rheological properties.

A few models are available for the interpretation of experimental data obtained with
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devices measuring capsule deformability. The common principle underlying most of
them is to predict the motion and deformation of a single capsule as a function of the
internal viscosity and membrane mechanical properties. Analytical three-dimensional
models are available for initially spherical capsules under moderate deformations
(Barthes-Biesel & Rallison 1981; Barthes-Biesel & Sgaier 1985) or for ellipsoidal
capsules with an assigned deformed geometry (Keller & Skalak 1982; Tran-Son-Tay,
Sutera & Rao 1984). These models can be used to analyse direct observations of
capsules in a shear flow (Sutera, Pierre & Zahalak 1989; Chang & Olbricht 1993), and
also allow the derivation of rheological constitutive equations for dilute suspensions of
identical capsules by averaging the contribution from all the particles (Drochon et al.
1990). The dilution assumption is necessary to guarantee the absence of interaction
between the particles. These equations then allow the interpretation of rheological data
in terms of the particles’ mechanical properties. The spherical capsule analyses have so
far been confined to moderate deformations and, therefore, they have a limited range
of validity.

The study of large deformations of capsules was made possible by the development
of boundary integral formulations of Stokes flow (Ladyzhenskaya 1969). Youngren &
Acrivos (1975) developed and numerically implemented this method to study the slow
viscous flow of an unbounded fluid past an arbitrary solid particle. The cases of a gas
bubble (Youngren & Acrivos 1976) and of a liquid droplet (Rallison & Acrivos 1978)
in elongational flow were studied shortly thereafter. The method was extended by Li,
Barthes-Biesel & Helmy (1988) to the study of large deformations of initially
ellipsoidal capsules with a Mooney—Rivlin membrane, suspended in an elongational
flow. Using the same flow configuration, Pozrikidis (1990) considered capsules with a
red-blood-cell-type membrane with an incompressible interface. The main contribution
of these studies is to show clearly the effect of different interfacial constitutive
behaviour on the overall capsule distortion. However, the study of capsules under large
deformation has so far been confined to pure elongational flows which are of limited
applicability to real problems.

The modelling of filtration flows has not been addressed yet, although situations
where capsules are moving through ducts have already been tackled. Helmy & Barthes-
Biesel (1982) used a perturbation method to study the migration of a small initially
spherical capsule with a Mooney—Rivlin membrane in a Poiseuille flow. In the case of
closely fitting particles, the existence of a thin film of liquid between the particle and
the capillary wall allows one to use the lubrication theory to evaluate the pressure
gradient in the film. Rigid particles, deformable particles, and capsules have been
studied with this method (T6zeren & Skalak 1979; Secomb et ¢/. 1986). Unfortunately,
some of these models require specific shapes, and most of them address steady
configurations. As a consequence, they are not useful to analyse filtration experiments
that are essentially transient nor situations in which entrance/exit effects in the pore are
clearly important.

It is the objective of this paper to provide a model for a quantitative analysis of
filtration experiments conducted with dilute suspensions of capsules, i.e. to describe the
motion and deformation of a single capsule flowing through a hyperbolic pore. The
formulation of the present problem complements that of Li ef af. (1988) and is similar
to that used by Martinez & Udell (1990) for neutrally buoyant drops flowing through
circular tubes at constant flow rate. The difference here, as compared to the
elongational case of Li ef al., comes from the presence of solid boundaries, the
influence of which must be included. Furthermore, either constant-pressure-drop or
constant-flow-rate conditions are modelled. Owing to the space-varying channel
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geometry, flow is transient and dominated by entrance and exit effects. The hyperbolic
constriction represents a short pore or a thin filtration membrane, and has the
advantage that the undisturbed flow field is known analytically.

The formulation of the Stokes equations in both the internal and suspending liquid
of the capsule using the boundary integral method is well adapted to this type of
strongly nonlinear free boundary problem, where the shape of one of the boundaries
is unknown a priori and must therefore be determined as part of the solution. The
advantage of this technique is to avoid solving the Stokes equations in their differential
form throughout the whole flow domain by relating the velocity of any point within the
fluid to the velocity and stresses on the boundaries.

The present study focuses on initially spherical capsules, which have a radius at least
20 % larger than the throat radius, in their resting shape. Furthermore, the internal and
external liquids have the same viscosity. This last condition results in a significant
simplification of the model. From the experimental point of view, Drochon ez al. (1993)
have shown that red-blood-cell membrane rigidification could be detected by means of
filtration experiments, provided one used a suspending medium with a viscosity
roughly equal to that of the internal haemoglobin solution.

A Mooney-Rivlin constitutive law is selected for the membrane. This choice
corresponds to the simplest elastic behaviour, and is appropriate for elastomer
membranes or for interfaces obtained by interfacial cross-linking polymerization. The
model provides the velocity of points on the capsule membrane and therefore predicts
the evolution of the capsule shape as it flows through the constriction. At each time
step, local variables are computed at the microscopic level, such as capsule geometry,
centre of mass velocity, and elastic tensions in the membrane. Global quantities at the
macroscopic level of the overall flow, are also predicted at each time step. These include
the entry time of the capsule through the pore, the additional pressure drop or the
perturbation of flow rate (according to the type of flow condition chosen, respectively
constant flow rate or constant pressure head) or correspondingly, the hydraulic
resistance of the system. Among the model parameters are the capillary number, which
measures the ratio between viscous and elastic forces to which the membrane is
subjected, the initial shape of the capsule and the size ratio between its characteristic
dimension and the radius of the constriction throat. ’

Constant-pressure-drop flows are considered in the first part of the discussion. A
detailed study of the micromechanics of a capsule at positions corresponding to
particular values of the macroscopic quantities characterizing the flow is presented.
First, capsules that are deformable enough to pass through the throat without touching
the walls or exhibiting membrane failure are considered. In this generic class, the
influence of the capillary number and size ratio is studied. A description of the
theoretical occurrence of pore plugging as a function of the capillary number and size
ratio, along with a discussion of the limits of validity of the model are then presented.
The dependence of the maximum flow rate perturbation and of the entry time of the
capsule into the pore on the capsule size and properties is discussed. The influence of
switching to a constant-flow-rate condition is then investigated. The effect of the type
of flow on the passage of the capsules and on the occurrence and types of plugging at
different values of the capillary number and size ratio is outlined.

2. Problem statement

The formulation of the problem applies to general three-dimensional situations, but
for simplicity, a fully axisymmetric configuration is considered (figure 1), in which the
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FIGURE 1. Schematic of the problem.

channel is a hyperboloid with revolution axis Ox. The velocity v*?(x) and pressure
P"?(x) fields have been determined exactly by Happel & Brenner (1965), for the Stokes
flow of a Newtonian incompressible liquid with viscosity . In particular, it is found
that far from the throat, the pressure is uniform, and the total pressure drop AP™?
across the constriction is related to the volume flow rate Q by

p _ 10
AP = /%RH,
t
where r, is the throat radius. The pore hydraulic resistance R, depends only on
geometry and is given by

_30-p
" 28 (1-5)”

where ¢, is the cosine of the angle of the hyperbola asymptote with the axis. The
resistance R, varies between 3 (¢, = 0, hole in a plane, also called Sampson flow) and
infinity (£, = 1, infinitely long cylindrical duct).

The capsule consists of a drop of a Newtonian incompressible fluid of viscosity Ay
surrounded by an infinitely thin membrane (M) with negligible bending resistance and
with a surface shear elastic modulus E,. In its unstressed state, the capsule is a sphere
with radius Rr,. At the beginning of the computational time, the capsule is injected into
the flow, with its centre of mass at the axis.

Non-dimensional quantities are used throughout, based on the following scales: r,
for lengths, E, for elastic tensions, ¥, (the average throat velocity of the flow at time
t = 0) for velocities, ¥, /r, for viscous stresses.

To model a wide range of filtration devices, the flow through the constriction is
driven either by a constant flow rate or by a constant pressure drop. In the first case,
the total pressure drop AP(¢) varies with time, and the bulk boundary conditions for
the flow are then

AP(t) = Rym+AP,,,(1), O() =m, (2.1

where AP, (1) represents the additional pressure drop due to the capsule. In the second
case, the flow rate varies with time and the bulk boundary conditions are

AP(t) = R,m, O() = n—éf;éid—(i). (2.2)
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In the latter case, the unperturbed far-field velocity ¢"?(x,7) that occurs in the
absence of the capsule, is a function of time.

2.1. Eguations of motion for the fluids

We introduce a fixed cylindrical frame of reference (x, r, ¢) (figure 1) centred on the
revolution axis at the throat of the constriction. The domains occupied by the internal
and external liquids are respectively denoted ©,,, and 2,.,. Normal unit vectors n point
into Q,,,. The capsule membrane, channel walls, inlet and outlet sections are denoted
respectively M, B, S; and S,. The fluid domain £,,, is therefore bounded by M, and
Q... is bounded by M, B, S; and S,. Under the assumption that the particle Reynolds
number is very small, the velocity v and pressure p in the internal and external fluids
are governed by the Stokes equations:

Vg =0, V.o =0 in Q,

Vo =0, V.o =0 in Q,, 0

with " = _pl_+_A(Vvint + Tvvint) in th’ )
o™ = —pl+ (Vo' + TV in Q

exl>

where 6**' and '™ are the stress tensors and ¢*** and '™ the velocity fields in the
external and internal domains, respectively.

For convenience, the sections S; and S, are assumed to be symmetrical with respect
to the throat, located at a distance L from the throat that is large enough for the
undisturbed pressures to be uniform to O(L %) and the radial and axial velocities to be
vanishingly small, i.e. O(L™®) and O(L™?) respectively. Furthermore, S; and S, are
required to be far enough from the capsule for the velocity perturbation to be
negligible:

(x> 0"P(x, 1) 2 0, xS, or § (2.4)

These conditions guarantee that the flow through S, or S, is characterized by vanishing
velocities even when the capsule is present. The pressure in these sections (P, and P,
respectively) is uniform but unknown. Their difference is AP(#), the instantaneous
pressure drop across the constriction (equations (2.1) or (2.2)).

The no-slip boundary condition is required on the solid wall of the constriction B
and on the deformed surface of the membrane:

o

v (x,0)=0, xeB, (2.5)
v (x, 1) = v'™(x,1) = 0x/dt for xeM. (2.6)

Finally, the dynamic equilibrium of the membrane leads to
e —e'"y-n+p=0 for xeM, (2.7)

where p is the force per unit area of deformed surface exerted by the membrane on the
surrounding liquids. Once the velocity of the membrane points is known, the
integration of the kinematic condition (2.6) yields the displacement of the membrane
points and therefore allows the computation of the shape of the membrane at any time.
Then, p can be determined for a known state of deformation x(¢) and for a given
membrane constitutive law. The capillary number ¢ in (2.7):

¢ =pul/E,,

is a measure of the deformability of the membrane in terms of the ratio between viscous
stresses and elastic forces. As ¢ decreases, the membrane becomes stiffer or the forces
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exerted by the fluids on the capsule decrease. Attention is drawn to the definition of e
when a constant-pressure-drop system is modelled: although the far-field velocity
changes with Q(r), the velocities are still scaled by ¥, which corresponds to Q(0): The
value of ¢ is thereby kept constant. If the velocities were scaled according to the current
flow rate, ¢ would correspondingly vary, but the non-dimensional far-field velocity of
the flow and therefore the non-dimensional flow rate would remain constant.

2.2. Boundary integral formulation

A convenient formulation of the problem is obtained by the boundary integral method.
The integral equation expressing the velocity of points of M, B, S, and S, as a function
of the velocities and forces on these surfaces is obtained following the same steps as
Martinez & Udell (1990). We find that at time ¢, the velocity of a point on the

membrane is given by
VxeM,

o~

A+ Do) = - | (K3 0)la(3)dS()— - | =y La - as(y)
o2

a2

FA=DPY [ K=y (1) S0+ | dwpPPasn, )

M
where 02 = BU S, U S,. The Principal Value of the double-layer potential when x is on
M, is denoted PV. On B, the scalar product —[¢**(y)-n(y)] is the force exerted by B
on the fluid. On §; or S,, 6** is — P/ or —P,I. The kernels K and J are known
functions of position given by
b}

i
=4
7l 7l

KT —3rrr
N

Jr)
where r = x—y.

For points x on 082, another integral equation similar to (2.8) is obtained. When the
internal and external fluid viscosities are equal, A is unity, and the double-layer
potential vanishes on M. This is the case that is treated here and from now on, A will
be set to 1.

It is convenient to use perturbation quantities defined as the difference between the
value of a variable in the presence of the capsule and the corresponding value without
the capsule. Another integral equation is then obtained, that is valid for any point x
on M or on 082:

Yxe MUy oQ,

o) — " (x) _

x

—JAQ [K(x—3)-10(3)— 0" 2(3)}]- n(y) dS()
+an| S PP asy
1
gl | He=nriasw
" f Jx=)-(ARe)dS0)

i

- f Sx-y)(aBe) dS(y)}, 2.9)

o
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where the double-layer integral must be taken in the sense of its Principal Value when
x is on &Q. The perturbation of the force exerted by B on the fluid is denoted f7, the
axial unit vector is e,, and the pressure perturbations at the entrance and exit sections
are respectively AP, and AP,. The parameter « is unity when x is on M, and is equal
to 2 when x is on 0£2. The velocity perturbation is at most O(d *L7*) on S; and S,
where d is the minimum of the distance between a capsule point and the entrance and
exit sections (¢ > 1 for (2.4) to be satisfied). Since the area of S, and S, is O(L?), the
K-integral in (2.9) can be neglected on S, and S,, and is exactly zero on B, according
to (2.5). The advantage of using perturbation quantities is thus that it is possible to
neglect the double-layer potential contribution.

Since the flow is axisymmetric, the ¢-dependency can be integrated analytically
(Youngren & Acrivos 1975), further reducing the dimension of the problem and
converting the surface integrals into line integrals along a meridian curve with
arclength denoted s, on B, 5,, on M and r on the normal sections S; and S,. The final
equations are then

VxeM,B,S;orS,:

l [vz(x)] — l [U;Lp(x)] +_L{ J [‘];ztz(x—yB) Jxr] [fllu(yB):l ds
a vr(x) a U?p(x) 8n Lp Jra: Jrr llnr( yB) “
(X yq ) Jr, AP, "o ‘Lr.r(x —ysa) J:vr APO )
T T e [T e

1 S (x—yy) ] [p (yM)] }
+7 rx ] € x dS P 2]0
JM[ PR | e (10)

where L, and L,, are respectively the meridian curves of B and M, and where r;, and
r, are the radii of the constriction in the entrance and exit sections. The kernels J can
be found in Li e? al. (1988) or in Pozrikidis (1992). Although the integrals in (2.10) are
improper when y = x, owing to the singular behaviour of the kernels J, they may be
shown to converge because of the logarithmic behaviour of the singularity.

2.3. Capsule membrane mechanics

The membrane deformation is expressed in terms of Lagrangian variables by labelling
the membrane material points along a meridian curve by their coordinates &, p, and
arclength S (S = 0 at the first upstream point of the membrane where p = 0) before
deformation. After deformation, the points have coordinates x, r and arclength
5 (s = 0 where S = 0). The membrane equations greatly simplify since the principal
directions of strain and stress at each point are along the meridian and azimuthal
directions. The deformation is therefore expressed in terms of the principal extension
ratios A; and A, in these directions, defined as

A, =ds/dS; A =r1/p. (2114, b)

Any type of hyperelastic behaviour may be chosen for the membrane, but the results
presented in this paper focus on the case of an infinitely thin membrane with a
Mooney-Rivlin law. The principal elastic tensions per unit length are deduced from the
classical theory of shell mechanics (Green & Adkins 1960 ; Barthes-Biesel & Rallison
1981) and, in the particular case of a neo-Hookean material, are given by

1 1 1 1
T = 2_ = 2 ,
3/\5A¢(A" A,E,\‘;)’ =, ("é /\W) (2.12a,5)
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The shell equilibrium equations give the tangential and normal components of the
force p exerted by the membrane:

_dr 1ar
Ps = 45y Trds

(];_];!;)=P'T7 pn:_(KsI;-i_KgEY;E):p'na (213a’ b)

where 7 is the unit tangent vector to the meridian, oriented in the direction of increasing
S and where K| and K are the principal curvatures of M:

dr, dr, _n,

The components of p in cylindrical coordinates are easily deduced.

The problem is thus reduced to solving equation (2.10) with boundary conditions
(2.4)(2.7). The integration of the kinematic condition (2.6) gives the instantaneous
position of the membrane points, and the force p is obtained from (2.11)-(2.14).

3. Numerical procedure

The general objective of this model is to simulate the passage of a capsule through
a hyperbolic constriction under either a constant pressure drop or a constant flow rate
until it either plugs the constriction or reaches a chosen position downstream the
throat. A collocation technique is used, based on a discretization of the boundaries,
followed by the determination of either the unknown forces or unknown velocity at
discrete locations. The undeformed meridian curve of M is partitioned by #,, points
Xy, ..., X, evenly spaced along the arclength. The meridian curve of B is discretized
into ny points, equally spaced along the parameter Arch(r,), where r, is the radial
coordinate of a point on B. The point density on B is therefore higher in the region of
high curvature, near the throat of the constriction. Sections S, and S, are uniformly
partitioned into n points.

The singularities of the kernels J are treated by subtracting the asymptotic
expression J* of the singular terms and then adding the analytically calculated sum (Li
et al.). The singular integrals of the single-layer potentials on M, B, S, and S, then
become

[ 09231850 = B )33 3) ~ IG5y x) £ )

Ffx)- f S5,y ds(y), = LN,

where L, represents any boundary partitioned with & collocation points. When i = j,
the corresponding term in the sum is exactly zero. The expressions for J* are given by
Liet al. for x and y on M. Similar expressions can easily be derived for x and y on 0Q;
The numerical integrations are performed by means of Simpson’s rule adapted for
uncven intervals, with accuracy of order As!, where As represents the maximum
interval length. The corresponding weights w, depend on the collocation point spacing
only.

At time 7 = 0, the undeformed capsule is introduced into the flow at a position
measured by the distance |x.(0)] between its centre of mass and the origin O of the
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reference frame. At time ¢, the position of the membrane collocation points is known,
and the local tangent and normal vectors, as well as the curvature of the meridian line,
are obtained directly by numerical derivations performed with the five-unequally-
spaced-point scheme used by Li et al. (with an accuracy of order As* for the second
derivative). The computation of the azimuthal curvature K, and extension ratio A,
present no difficulty except for the points x,,  and x, where they are set equal to the
meridian curvature K, and extension ratio /\b, respectively. The value of the force p
follows readily from (2 13a, b).

Equation (2.10) where o = 2 is then used to determine f} at every collocation point
on B, together with AP, and AP,. A linear system consisting of 2n, + 2 scalar equations
for the 2n,+2 unknowns (ny values of f1_and f} , plus AP, and AP,) is then solved.

In the case of constant flow rate, p, f3, AP, and AP, are directly introduced in
equation (2.10) with « = 1 to compute the velocity v, of the membrane points x; for
i=1,...,n,,. In the case of constant pressure drop, it is first necessary to determine the
flow rate Q(f) by means of (2.2), where AP, ,,(1) is simply AP,—AP,. The unperturbed
flow field #"2(¢) at time ¢ follows readily and (2.10) can then be used as described above.
Once the velocity of the membrane points at time 7 is determined, their new position
at time ¢+ At is computed by integrating the kinematic condition (2.6) by means of an
Eulerian explicit scheme:

x,(t+A) =x,O)+v ()AL, v, (t=0)=0}"(t=0).

The process is initiated at time ¢ = 0 by assigning the unperturbed velocity of the
flow to all the membrane points, and is stopped either when the capsule centre of mass
has reached a specified position downstream of the constriction, or when plugging is
detected. Plugging is considered to occur when the membrane tends to touch the wall.
It is then necessary to stop the calculation for two reasons: contact forces between the
membrane and the wall are not accounted for, and new singularities appear in
boundary integrals that were otherwise non-singular. The plugging criterion is based
on the minimum gap width between the membrane and the channel wall being larger
than 0.01.

The computation of the membrane deformation and load p requires two successive
numerical derivations of the instantaneous position of the membrane points.
Correspondingly, as was observed by Rallison & Acrivos, by Li et al. and by
Pozrikidis, the computed extension ratios A, A and elastic tensions 7, T, exhibit an
oscillation with a period equal to twice the collocation-point spacing. An increase in
the collocation-point density alleviates the problem but leads to prohibitively large
computation times. As first suggested by Li et al., another way to alleviate the problem
is to perform a numerical smoothing of the deformed profile. Pozrikidis has shown that
the smoothing method proposed by Longuet-Higgins & Cokelet (1976) is stable and
efficient for this type of problem. Only the profiles (here the membrane point
coordinates x and r) need be smoothed for all the other variables to behave smoothly.

The volume conservation of the capsule is implicitly guaranteed by the Stokes
equations. However, numerical errors lead to small volume variations at each time step
(less than 107 in the present results). If no particular precautions are taken, after a
large number of time iterations (typically of order 250000), the accumulation of
numerical errors may lead to volume variations of order 5% to 15% in extreme cases
near plugging. This classical problem experienced by other authors (Martinez & Udell)
is solved by correcting the volume periodically. The positions of the capsule points with
respect to the centre of mass are thus rescaled by a factor equal to the cube root of the
volume, at each time step.
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The explicit character of the solution scheme (Fulerian time integration scheme)
makes it susceptible to numerical instability. Li et a/. have introduced the following
stability criterion:

At < eAs
which obviously leads to very small values of A, especially where numerical precision
requires that As be small.

Numerical validation of the model

The validation of the model is difficult owing to the time-dependent nature of the
problem and to the absence of either analytical or numerical solutions. An additional
difficulty comes from the fact that all parameters influencing the accuracy of the model
are interrelated in the way they affect the convergence of the scheme. For lack of a
better alternative, the scheme will be said to converge when any significant change
(over 50 %) of one or more numerical parameters (density of collocation points on the
boundaries, Af) and/or physical parameters (position of S; and S, x,(0)) produces a
change of no more than 5% in a selected control variable, 1.e. the flow rate or the
additional pressure drop. This leads to the determination of acceptable values of these
parameters, based on the balance between the need for numerical precision and the
necessity to restrain computational cost. As an additional check, at each time step the
force balance was verified over a control volume delimited by S;, S, and B. An order
of accuracy to the eighth decimal place was obtained for each iteration in all the results
presented here.

The value of L must be such that P, and P, be uniform and (2.4) satisfied within a
good approximation. Acceptable values of x(0) and of L are thus closely related. For
capsules tested here, it was found that a ratio L/|x,(0)| of order 5 was acceptable to
salisfy (2.4). Then the largest |x,(0)| for which the model converged was determined.
This value depends both on the size ratio and on €. Typically, the values of L and x,(0)
were respectively of order 35 and —7.

A sensitive parameter for the solution of (2.10) in terms of the forces on B, S, and
S,, 1s the density of points on these boundaries. As shown by Delves & Mohamed
(1985), the Nystrom method used here is better adapted to Fredholm equations of the
second kind. In the case of Fredholm equations of the first kind, as in this model, the
efficiency of this solution technique may decrease as the partition of the boundaries is
made finer. Tt is therefore necessary to prove that the range in which parameters 7, and
ng are chosen is safe. Some numerical tests are presented for constant-pressure-drop
conditions, for a capsule that is 40 % larger than the throat (R = 1.4) and a capillary
number set to ¢ = 1. The flow rate Q in the channel is shown as a function of the
position of the capsule centre of mass along the axis. Such a graph is shown here for
numerical validation purposes and is commented upon in §4. The mesh size on the
entrance and exit sections is first set to 0.25. A comparison of the results obtained when
Bis partitioned with n, = 241, 375, 481 points, is shown on figure 2. The corresponding
values of the minimum flow rate are respectively 2.538, 2.555 and 2.561. Consequently,
when ny, is increased from 375 to 481, the results are superimposed within graphical
accuracy. When the mesh size on S; and S, is divided by 2, the results differ by less than
0.1%. :

For a given value of ¢, once a safe value of Ar has been determined, n,, can be
increased (and At proportionally decreased) until the evolution of the flow rate or
pressure perturbation is not affected anymore. Results obtained with two different
mesh sizes on the undeformed capsule AS = 7 x 102 and 3.5 x 1072, with an associated
time step Ar =1x 107 and 0.5 x 1072, differ by no more than 0.3 %.
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FIGURE 2. Evolution of volume flow rate () as a function of centre of mass position x,,. Case R = 1.4,
¢ = 1. The channel boundary is partitioned with 241, 375 or 481 collocation points. The results
obtained with the last two partitions are superimposed within graphical precision.

The effect of the smoothing procedure was evaluated by comparing the results
obtained with (AS=7x107%, Ar=1x10"?%) and without smoothing, keeping the
partitions of B, S, and S, unchanged and choosing a fine partition for M (AS =
3.5x 1072, At = 0.5% 107®). The results obtained for the flow rate differ by less than
0.8 %. This indicates that smoothing does not significantly perturb the results, while it
allows us to use a larger mesh size and thus to reduce significantly the CPU time.

Finally, to check the accuracy of the Eulerian time integration scheme, the time step
was decreased by a factor of 2 with all the other parameters kept the same. The results
were found to differ by less than 0.3% for both the capsule shape and the evolution
of the flow rate.

4. Constant pressure drop

When filtration is used to determine the mechanical properties of cells or capsules,
the pore size is usually chosen to be slightly smaller than the resting size of the particles
so that the membrane is subjected to sufficient mechanical forces. The initially spherical
capsules studied in this first set of numerical experiments have size ratios R larger than
unity, and the opening of the constriction throat is set to {, = 0.7 in all cases. As {,
varies between 0 and 0.7, the hydraulic resistance increases from 3 to 5. Consequently,
a value of ¢, less than 0.7 is not expected to produce significantly different results. For
values of ¢, larger than 0.7, the constriction becomes very gradual and thus does not
represent well a pore entrance. Furthermore, the hydraulic resistance measured
experimentally by Drochon (1991) for the pore of filters used for blood cell filtration,
corresponds to the sum of the resistance of a short cylinder (corresponding to the pore
itself) and of a hyperbolic constriction with £, = 0.7. The flow is driven by a constant
pressure drop.

A typical case where R =14 and ¢= 0.3, corresponding to a capsule that is
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FIGURE 3. Evolution of volume flow rate ¢ as a function of centre of mass position x, for ¢ = 0.3
(—e—)and e=1(+).
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FIGURE 4. Successive profiles of a capsule with initial radius R = 1.4 at e = 0.3, for different
positions of the centre of mass x,,, as indicated on the figure.

deformable enough to go through the constriction without touching the walls, is
discussed in detail. The role of the capillary number is studied by comparing two cases
where ¢ = 1 and 0.3. Then, the influence of the size ratio is evaluated by comparing the
flow rate evolution in three cases (R = 1.2, 1.4 and 1.8) when ¢ = 0.3. Pore plugging is
investigated through the study of R = 1.8 at ¢ = 0.05 and R = 1.4 at ¢ = 0.03.

4.1. Characteristic motion of non-plugging capsules (R = 1.4, ¢ = 0.3)

The capsule starts from the position x,(0) = —7 determined as explained earlier. The
entrance and exit sections are located at a distance L = 35 from the constriction throat.
The evolution of the flow rate Q as a function of the instantaneous capsule centre of
mass position x,; is shown on figure 3. The deformed profiles are shown on figure 4 for
capsule positions x, = —3.25, —2.5, 0.0, 1.75, 2.5, 4.25, 6.25. The variation with S of
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FIGURE 5. Evolution of the longitudinal A,(«) and hoop A (b) extension ratios as a function of the
initial arclength S for R = 1.4 and e = 0.3, for significant positions of the centre of mass: @, x, =
—25 A, x,=0; R x,=175 +,x,=25 —e—, x, =425

the meridional A, and hoop A, extension ratios, and of the meridional 7 and hoop 7,
elastic tensions in the membrane are shown respectively in figures 5(a, ») and 6(a, b).
The net resultant force exerted by the membrane on the fluids vanishes since the system
is inertialess. However, the rate of energy W exchanged between the membrane and the
fluids is finite:

W=1f p-vdS,
€

and provides information on the relationship between membrane micromechanics and
bulk flow variations. The evolution of W with x, is shown on figure 7. When W is
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FiGure 6. Evolution of the longitudinal T(a) and hoop Y;(b) elastic tensions as a function of the initial
arclength S for R = 1.4 and ¢ = 0.3, for significant positions of the centre of mass: &, x, = —2.5;
A x, =0, x,=175 4+, x, =25, —e—, x, =4.25.

negative, the membrane energy consumption increases. When it is positive, the
membrane tends to restore energy to the system.

It should be kept in mind that the flow accelerates upstream of the throat and then
decelerates, so that the problem is transient owing to both geometric and kinematic
reasons. Correspondingly, the capsule motion and deformation proceed roughly in
three phases: a suction phase where the front of the capsule is pulled into the pore (Q
decreases), a transit phase where the front of the capsule has reached the decelerating
region while the rear is still accelerating (Q increases), and finally a recoil phase where
the capsule returns to its equilibrium shape (Q oscillates back to the initial value 7). In
the following, each phase is specified by a range of values of x,, the bounds of which
should not be interpreted in a precise sense.
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FiGure 7. Evolution of the ratc of energy W exchanged between the membrane and the fluids as a
function of centre of mass position x, for R = 1.4, and two capillary numbers: A,e=0.3; #,e=1.

(i) Suction phase: x, < —2.5

The capsule is stretched along the meridian. Its front being subjected to increasing
levels of velocity, it extends rapidly, as can be readily surmized from the evolution of
A, (figure 5a). As the capsule moves into the constriction, the peak in meridional
extension becomes larger and is concurrently shifted towards the middle of the particle.
Quite large extension ratios are attained (A, ~ 2.6). The elastic tension 7 is positive,
and its evolution follows that of A,. The hoop extension ratio and tension values are
much smaller than the corresponding meridional ones. This indicates that in the region
of maximum extension, the parallel curves are compressed. Since W is negative, the
membrane deformation consumes an increasing amount of energy and the flow is
consequently retarded. The minimum of W corresponds to the minimum of Q.

(ii) Transit phase: —2.5 < x, <1

The front part of the capsule has passed through the constriction and is slowing
down. The front meridional extension would tend to decrease, but the nose of the
capsule expands radially, leading to values of the hoop tension and extension ratio
larger than in the suction phase (figures S, b and 64, b). The portion of capsule located
at the throat is still under tension and undergoes large deformations (max (A,) ~ 2.6 for
X, = 0), the level of which decreases after the capsule centre of mass has passed the
throat (x > 0). Owing to elastic energy recovery between the rear and the front of the
capsule, W increases from negative to positive values. The position of x, where W
becomes positive corresponds to the point where the maximum level of 7, along the
capsule meridian starts decreasing (figure 6 ). This indicates that the capsule restores
elastic energy to the system.

(i1)) Recoil phase: x, > 1

In this phase, the cooperative effect of the elastic forces causes values of Q to become
larger than that at the initial level. The front of the capsule has virtually stopped, while
the rear still has a substantial velocity, and thus tends to re-enter the capsule, leading
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4.25.
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to a ‘parachute’ shape. The front of the capsule is under tension in both the meridional
and hoop directions. The recoil phase begins when the meridional tension 7, becomes
negative and pulls the downstream part of the capsule. Correspondingly, the extension
ratio A, decreases (compare for example the values of A, for x; = 1.75 and 2.5 on figure
5a), and may become slightly smaller than unity in some parts of the membrane. At
X = 1.75 (corresponding to the maximum value of the flow rate), W and Q start
decreasing again, owing to the elastic forces that tend to compress the interface (7,
becomes negative in some parts) even though the membrane resists this type of
deformation. The front of the capsule then expands radially, thus relieving
compression. This leads again to cooperative elastic forces and to an increase in W and
Q. The parachute shape fades away and the flow rate eventually returns to its original
value as the capsule regains a spherical shape. The oscillations of the flow rate are
therefore related to the successive phases of extension/compression of the capsule
membrane.

Although some parts of the membrane appear to be slightly under compression
(A, < 1), no buckling is observed. In real situations, the bending rigidity of the interface,
however small, would prevent buckling. As was pointed out by Pozrikidis (1990), the
numerical smoothing of the deformed profiles may play a role that is qualitatively
similar to that of bending resistance. Also, the overall behaviour of the capsule
indicates no tendency to breakup through a process of continuing extension, as
happens in elongational flows (Li ez al.). This is due to the specific configuration of the
flow, where the deceleration phase following the constriction stops the particle and
allows the elastic forces to operate. For very deformable capsules, the high deformation
levels reached in the flow process might lead to breakup due to material failure. It is
interesting that the parachute shape is similar to that observed when red blood cells
flow through narrow capillaries, even though the present capsules are initially
spherical. Here, this shape is produced by the negative downstream velocity gradient.

4.2. Effect of the capillary number and capsule radius
(i) Effect of the capillary number: R=14,¢=03 and ¢ =1

The phenomena observed when the capillary number is greater than 0.3 are
qualitatively similar to those described above, as far as the evolution of the capsule
shape, of W and Q is concerned. The effect of ¢ can be assessed by comparing two
capsules C, , and C, of same initial radius (R = 1.4) with respectively ¢ = 0.3 and ¢ =
1 (figures 3 and 7). Capsule C, is more deformable than C, ,, under identical flow
conditions. The deformed profiles are compared on figure 8(a—e), for identical
positions of the centres of mass.

An increase in ¢ leads to a decrease of the maximum flow perturbation (AQ,,,./Q, =
20% for C, and AQ,,,./0Q, = 36% for C,,), and of the rate of energy consumption
(figure 7). The deformation process starts further upstream of the throat for C,, and
the flow rate begins to decrease when x,, is still comparatively far from the throat.
Correspondingly, the recoil phase occurs for values of x that are larger for C, than for
C,.;- Indeed, since the elastic tensions are small for C,, they are not pulling the rear of
the capsule efficiently. Correspondingly, the role of viscous forces in the recovery
process is important for C,, and the oscillations back to the initial state are damped out
quickly. The deformation and relaxation processes thus take place over a larger length
of the constriction as the capillary number is increased. This can be easily verified from
a comparison of the deformed profiles of the two capsules (figures 8 a—e).

A convenient way of depicting the global evolution of the capsule shape is to plot
the axial positions of the capsule nose and tail as a function of x, (figure 9). The



152 A. Leyrat-Maurin and D. Barthes-Biesel

x (nose)

x (tail)

XG

Ficure 9. Evolution of the axial position of the nose, x(nosc), and of the tail, x(tail), as a
function of x,: —e—, C,,; +, C,.

parachute shapes are attained when the distance between the tail of the capsule and the
centre of mass decreases, and thus when the x(tail) curve comes close to the straight
line x = x,. This position is reached closer to the throat for C, , than for C,. In fact,
the stiffer the capsule (for a given flow velocity and liquid viscosity), the closer to the
throat, on the downstream side, it will attain its sharpest parachute shape. Figure 9
allows the extrapolation of the position of x, where the capsule regains a spherical
shape.

In the limit of infinitely large values of ¢, the interface is simply a collection of
material points convected by the undisturbed flow field. Such a fictitious capsule would
reach a parachute shape downstream of the throat and keep expanding in the radial
direction, whereas, owing to the elasticity of their membrane, capsules with finite values
of ¢ ultimately recover a spherical shape.

The evolution of the centre of mass velocity ¥,, is a complex function not only of x,
but also of the state of deformation of the membrane, and thus of ¢. Figure 10 shows
the variations of V, with x for the two capsules C, , and C,. For comparison, the
initial undisturbed axial fluid velocity vj?(x,) at the same position x, is also plotted.
The velocity of C, deviates significantly from the unperturbed fluid velocity for
X, > — 5. Before this point, the capsule is almost undeformed, and travels through the
pore with roughly the initial unperturbed fluid velocity. For —5 < x, <—2.5, ¥V, is
larger than v)7(x,). Indeed, the front points of the capsule have reached the throat
region where the velocities are large whereas the rear, which is almost undeformed, is
still travelling with the unperturbed fluid velocity (figure 84). The reason ¥, becomes
smaller than v{?(x ) for x, > —2.5is related to the significant decrease in flow rate and
to the fact that the front points of the capsule have reached a decelerating region.

The effect of ¢ may be assessed by comparing the velocities ¥, and ¥, , of the two
capsules C, and C, ,. During the suction phase, ¥, is initially larger than ¥, ,. This
is because the front part of C, is in a high-velocity region, while all of C, , is still in a
low-velocity region. However, during the transit phase, ¥, , becomes larger than ¥V, :
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FiGURE 10. Evolution of the centre of mass velocity V¥, of C,, () and of C, (+). Comparison
with the initial non-perturbed fluid velocity (A).

although the flow rate decrease is larger for C, ,, its deformation is smaller and it is
globally closer to the throat than C,. Larger values of V, are observed between x, =
1.75 and 3 and may be attributed to the fact that, in this region of x, the flow rate at
¢ = | becomes significantly larger than the flow rate at ¢ = 0.3. Indeed, C, enters the
early recoil phase where Q increases above 7 whereas C, , is already in the phase where
the flow rate oscillates below 7. During the final phase of the recovery process the three
velocity curves are superimposed. These results are useful for analysing filtration data,
since they give information on the residence time of different capsules in a pore.

(i1) Effect of capsule size: ¢ =03, R=1.2, 1.4 and 1.8

Figure 11 shows that for ¢ = 0.3, capsules with size ratios up to 1.8 can go through
the constriction and reach the downstream side of the throat without touching the
walls. As expected, larger capsules start deforming further upstream of the throat than

smaller capsules. As a consequence, the flow rate starts decreasing at x, = —6, —5 or
—4 respectively for R = 1.8, 1.4 or 1.2. Similarly, the transit phase begins for positions
of x further upstream of throat for larger R (x; = —3 for R = 1.8 versus x, = —2 for

R = 1.2), because larger capsules extend more readily and their nose reaches the throat
for positions of their centre of mass still fairly far upstream in the constriction.

For a given position of x, in the suction or transit phase, the larger the capsule, the
larger the flow perturbation. When R is increased from 1.2 to 1.8, i.e. for a difference
of 50 % in the initial radius of the capsule, or, correspondingly, a difference of 240 % in
the initial volume of the capsule, the maximum flow rate perturbation AQ/Q, changes
from 30 % to 44%. Although the transit phase is longer for larger capsules, the rate
of increase of Q with x, is roughly the same for all three initial radii. This confirms that
this rate of increase is directly related to the membrane elasticity.

4.3. Pore plugging

Pore plugging is an experimental problem that occurs frequently when the pressure
head is not high enough to force a given capsule through a pore. The occurrence of
plugging then perturbs the filtration results considerably. It is thus important to be able



154 A. Leyrat-Maurin and D. Barthes-Biesel

FicURE 11. Evolution of volume flow rate Q as a function of x, for e =0.3: @, R=1.2;
+,R=14; A, R=138.
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FiGgurE 12. Evolution of volume flow rate Q as a function of x,: @, R = 1.4, ¢ = 0.03;
A, R=138,¢=0.05

to predict this phenomenon and to understand the prevailing physical mechanisms. Up
to now, results have been presented for capsules deformable enough to go through the
constriction. It is clear though, that very rigid or very large capsules would eventually
block the pore. The numerical model predicts this occurrence. Indeed, it was found that
in some cases, the capsule gets very near the wall of the constriction and that the flow
rate then drops significantly. This is interpreted as plugging. It should be recognized
though that, when membrane points touch the wall, the numerical model fails as
explained in §3.
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FIGURE 13. Successive profiles of a capsule showing plugging of the pore under constant pressure
drop. (@) R=14,c=0.03; (b)) R=138, ¢ = 0.05.

(i) Entry plugging

Figure 12 shows the evolution of the flow rate for two capsules (R = 1.4, ¢ = 0.03
and R = 1.8, ¢ =0.05). In both cases, the suction phase is normal with the flow rate
decreasing at a faster rate for the larger but more deformable capsule. However, when
the nose of the capsule has passed the throat and when the transit phase should begin,
the flow rate suddenly drops and tends to zero, indicating that the capsule has plugged
the pore. Successive capsule profiles are shown on figure 13(a, »): the membrane gets
very near the wall.

(ii) Exit plugging

In some instances, it is found that the capsule tends to touch the wall in the final
transit phase, i.e. when the centre of mass has passed the throat. This phenomenon is
illustrated for two particles, with radii 1.4 and 1.8.

Figure 14 shows the flow rate evolution with x, for a capsule with radius 1.4 for
three values of e. As indicated previously, for ¢ = 0.03, entry plugging is observed. For
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FiGURre 14. Effect of capillary number on flow rate @ (R=1.4). @,e=0.3; +, e=0.1;
A, ¢=0.03.

FIGURE 15. Successive profiles of a capsule (R = 1.4, ¢ = 0.1). The membrane gets very near the
wall, but the capsule eventually squeezes out.

¢ = 0.3, the capsule flows freely through the pore. For ¢ = 0.1, the situation is not so
clear. Indeed the flow rate ultimately goes back to its initial value, but after strong
oscillations that correspond to successive compression/extension states of the
membrane. In the recoil phase a parachute shape is observed for values of x,, quite
close to the throat (figure 15). As the tail re-enters the capsule, the cusp produced tends
to get very close to the wall, thereby slowing down the capsule and inducing a decrease
in the flow rate (figure 14). In the region of cusps, where the lubrication film becomes
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FIGURE 16. Effect of capillary number on flow rate O (R =1.8). —e—, ¢=03; 4+, e=0.1;
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FIGURE 17. Successive profiles of a capsule (R = 1.8, e = 0.1). The capsule appears to be blocked
during the exit process.

very thin, large oscillations of the force exerted by the wall on the fluid occur. The
numerical precision then quickly deteriorates, but it was sometimes found useful to
decrease the time step until the solution converged. In the case R = 1.4 and ¢ = 0.1, the
capsule gets dangerously near the wall, but manages ultimately to squeeze through.
Figure 16 represents the evolution of the flow rate for a larger capsule of initial
radius 1.8 for ¢ = 0.05, 0.1 and 0.3. The tendencies are similar to those just discussed.
However, for ¢ = 0.1 the flow rate evolution curve seems to indicate that the capsule

6 FLM 279
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FiGure 18. Maximum flow rate perturbation as a function of ¢ for capsules of initial radius:
0, R=12; &, R=14; W, R = 1.8. The plugging zone is indicated.

is blocked during the exit process. Figure 17 shows the successive last profiles observed
before the capsule gets too near the wall and the process is stopped. However, the limit
of validity of the model is definitely reached in this case. Indecd, along with the
problems due to contact, cusps on the tail of the capsule are very sharp. The variations
of the curvature in this area are large and difficult to compute with precision. Owing
to these numerical limitations, it is not clear whether the capsule of figure 17 will be
able to exit the pore or not.

A point in support of the occurrence of exit plugging is that clusters of blood cells
stuck on the downstream side of filters are sometimes observed. These cells have
reached the downstream side of the flow, but are stuck both to the membrane and to
one another (Chien et al. 1984). This phenomenon is due to intermolecular interactions
between the cells and the filter, and occurs when the distance between the cells and the
filter wall becomes very small. Our model does not account for such physicochemical
effects.

4.4. Bulk variables of the flow

A convenient way of representing the model predictions is to plot maximum flow rate
perturbations as a function of € and R (figure 18). This allows a comparison of the
theoretical bulk results to the experimental data since changes in flow rate are
commonly measured experimentally. The regressions that can be derived from these
curves may then be used to interpret the filtration experiments of Drochon et al. (1993).
The zone where plugging is expected or observed is also indicated on figure 18.
However, the position of the frontier cannot be taken in a very precise sense. For large
values of ¢, the flow rate perturbation is quite small and fairly insensitive to capsule
size. Cases where the longitudinal extension ratio becomes larger than 4 are dismissed,
since most elastomer membranes would break in normal conditions.

Another parameter of interest is the so-called entry time ¢, in the pore. It can be
determined experimentally by means of an electrical method where the change of
conductivity of a filter when one cell flows through is measured (Fischer, Wenby &
Meiselman 1992). To be consistent with the experiment, ¢, is defined here as the interval
between the times where Q is decreased by 2% (i.e. Q = 3.1) and where Q is minimum.
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FIGURE 19. Entry time ¢, in a pore as a function of ¢ for capsules of initial radius: (3, R=1.2; #,
R=14; A, R =1.8. The entry time is more sensitive to size ratio changes than to capillary number.

The evolution of ¢, with ¢ and with R is shown on figure 19. As expected, the model
predicts that the entry time increases with capsule size and rigidity. It is interesting that
both figures 18 and 19 indicate that the capillary number has a smaller relative
influence on Q or on ¢, than the size ratio R. This means that filtration is not as sensitive
to changes in membrane rigidity as to changes in capsule size.

5. Constant-flow-rate condition

Some experimental devices operate under constant-flow-rate conditions. The effect
of the capsule may be measured in terms of additional pressure drop. However, to
establish a direct comparison between constant-pressure-drop and constant-flow-rate
systems, it is appropriate to introduce the apparent hydraulic resistance R,;, of the
pore:

AP(D)
o) °

where AP(1) and Q(¢) are defined by (2.1) and (2.2), according to the flow conditions.
The bulk effect of the flow-rate conditions is presented on figure 20 which shows the
evolution of the relative perturbation of the hydraulic resistance as a function of x, for
R =1.4and e = 0.1, for constant pressure drop and constant flow rate. The curves are
superimposed up to x, = —2.75, showing that the evolutions of the capsule are similar
up to this point. Then, AR,,/R, becomes larger (maximum at 105%) for AP =
constant than for Q = constant (maximum at 70 %). Finally, after some oscillations,
the perturbation of the hydraulic resistance vanishes when the capsule has passed the
throat, thus indicating that the particle has squeezed through in both cases. The
evolution of the capsule shape in the recoil phase is shown in figure 21 for constant flow
rate, and should be compared to figure 15. It appears, as expected, that the lubrication
film in the most critical region is thicker for Q = constant. Correspondingly AR,,,/R,,
is lower at Q = constant. These results suggest that constant-pressure-drop systems
may be more efficient (given the accentuated response) in discriminating between
normally deformable and stiffened capsule membranes.

Ryglt) = 5.1

6-2
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Figure 20. Evolution of the relative perturbation of the constriction hydraulic resistance as a
function of x, for R=1.4 and ¢ = 0.1: @, constant pressure drop; +, constant flow rate.

5..

bty

FI1GURE 21. Successive profiles of a capsule (R = 1.4, ¢ = 0.1) during the recoil phase, under
constant-flow-rate conditions.

It is obviously of interest to compare a capsule that plugs the pore under a constant
pressure drop to the same particle under constant-flow-rate conditions. Figure 22
shows the evolution of ARy,/R; as a function of x for a capsule R = 1.4, ¢ = 0.03
under the two types of flow conditions. The evolutions of AR,,,/Rj, are similar up to
Xg = —2.25. At this point, owing to the dramatic decrease in flow rate the hydraulic
resistance for the constant-pressure-drop flow goes to infinity as the capsule gets
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FiGUure 22. Evolution of the relative perturbation of the constriction hydraulic resistance as a
function of x,,. Plugging occurs. R = 1.4 and ¢ = 0.03. —, Constant pressure drop; +, constant flow

rate.
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FIGURE 23. Successive profiles of a capsule (R = 1.4, e = 0.03) under a constant flow rate. Exit
plugging seems to occur.

blocked at the entry of the pore. In the constant-flow-rate situation however, AR,/ Ry
starts decreasing when x, > —1.75 but the capsule tends to be stuck at the exit, as
shown in figure 23, where the same kind of plugging pattern as in the case R = 1.8,
e = 0.1 (figure 17) is observed.

Bulk results may be expressed in terms of the maximum perturbation of the apparent
hydraulic resistance of the pore as a function of ¢ for a given size ratio (R = 1.4, figure
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FIGURE 24. Evolution of the maximum relative perturbation of the hydraulic resistance as a
function of ¢ (case R = 1.4). @, Constant pressure drop; [, constant flow rate.

24). As pointed out earlier, constant-flow-rate conditions produce a lower perturbation
than constant-pressure-drop conditions but the difference tends to fade away for larger
values of e(~ 1), where the level of perturbation is small in both cases.

6. Conclusion

The overall aim of the studies reported here has been to acquire fundamental
knowledge on the microrheology and micromechanics of capsules and to provide
theoretical data for the quantitative interpretation of filtration experiments. A
comparison of the regressions obtained for the relative maximum decrease in flow rate
as a function of ¢ at constant pressure head with the experimental decrease in flow rate
reported by Drochon et al. (1993) for red blood cells the membrane of which has been
artificially rigidified, shows that the model is able to predict only relative variations of
E, (Leyrat-Maurin, Drochon & Barthes-Biesel 1993). However, to interpret red-blood-
cell filtration experiments in terms of the shear surface elastic modulus £, of the cell,
it is necessary to modify the membrane constitutive law. The red-blood-cell membrane
is a lipid bilayer lined by a protein network. As such, it possesses shear elasticity (as
measured by a modulus like E,) and is also area incompressible. Constitutive laws that
account for both properties have been proposed by Skalak et a/. (1973) and by Evans
(1973). Such a model is presently being developed and will be reported in a future
communication.

This work was supported by CNRS and by Conseil Régional de Picardie, Pdle
Modélisation.
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